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Abstract

This paper presents a multiscale corner detection method in planar shapes, which applies
an undecimated Mexican hat wavelet decomposition of the angulation signal to identify sig-
nificant points on a shape contour. The advantage of using this wavelet is that it is well suited
for detecting singularities as corners and contours due to its excellent selectivity in position.
Thus, this wavelet plays an important role in our approach because it identifies changes in
non-stationary angulation signals, and it can be extended to multidimensional approaches in an
efficient way when approximating this wavelet by difference of Gaussian. The proposed algo-
rithm detects peaks on a correlation signal which is generated from different wavelet scales and
retains relevant points on the decomposed angulation signal while discards poor information.
Our approach assumes that only peaks which persist through several scales correspond to cor-
ners. Furthermore, we introduce a novel procedure to tune parameters for the corner detection
algorithms that corresponds to the best relation between Precision and Recall measures. This
technique guides the parameter adjustment of the algorithms according to the image database
and it improves their performance with regard to true corner detection. Concerning the perfor-
mance assessment of the algorithms, we compare the proposed one to other corner detectors by
using Precision and Recall measures which are based on ground-truth information. Tests were
carried out using more than a hundred images from a non-homogenous database that contains
noisy and non-noisy binary shapes1

1 Introduction

According to Mokhtarian and Mohanna (2006), corners are important features in images and more
relevant than other points in a shape. Also known as high curvature points (HCP), they are useful
for shape description and furthermore represent an object in a compact manner, invariant to rotation
and translation [24, 29].

1Ialis C. Paula Jr. · Fatima N. S. Medeiros, Depto. de Eng. de Teleinformatica, Universidade Federal do Ceara,
Fortaleza, CE, Brazil, E-mail: ialis, fsombra@ufc.br, Francisco N. Bezerra, Inst. Fed. de Educacai, Ciencia e Tec-
nologia - Campus Maracanau, Maracanau, CE, Brazil, E-mail: nivando@ifce.edu.br, Daniela M. Ushizima, Math and
Visualization Groups, Lawrence Berkeley National Lab., Berkeley, CA, USA, E-mail: dushizima@lbl.gov
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Shape analysis and recognition tasks can benefit of algorithms to detect corners and dominant
points, which can be used to represent objects [7, 22, 32]. Applications that rely on corners include
scene analysis, polygonal approximation, feature matching, robot navigation, shape similarity and
object tracking, among many others. One important class of corner detection models often suppose
that the interest points correspond to the high curvature ones of an object profile. High curvature
points from shapes can generally be associate to salience, indicating the presence of relevant land-
mark for reconstruction of forms. A large number of corner detectors have been proposed in the
literature [3, 8, 10, 20]. The current techniques can be broadly categorized into two groups named
as intensity-based [3, 8, 28, 30] and contour-based detection [8, 14, 33, 34] methods. The former
includes algorithms that indicate the presence of a corner directly from the image gray values. The
latter consists of the methods that recover image contours, followed by the search for curvature
maxima or inflection points along these contours [19]. The proposed method belongs to the latter
group since our database consists of shapes with previously extracted contours. Corner detec-
tors can also be classified into two approaches: single-scale detectors [9] and multiscale detectors
[3, 14, 22]. Single-scale detectors work well only if the image has similar size features; other-
wise either fine or coarse scale features are poorly detected. Multiscale corner detectors based on
the classical scale-space theory [17] have been proposed to improve the effectiveness in the more
general situation of relevant features with various sizes. Rattarangsi and Chin (1992), Mokhtarian
and Suomela (1998), and Mohanna and Mokhtarian (2006) introduced the curvature scale space
(CSS) technique to detect corners. Developments of this technique with minor modifications have
been proposed as the Direct Curvature Scale Space (DCSS) and a hybrid version to overcome the
sensitivity of DCSS to noise [35]. The hybrid CSS/DCSS can help trace a corner back to the finest
scale so that the corner can be located as precisely as possible [35]. In addition, compared to CSS,
DCSS is much cheaper in terms of computational cost.

Shape contour can be represented in terms of edge gradient direction, as defined in [15, 27].
Lee et al. introduced in [14] a framework for wavelet-based corner detection using different scales,
followed by several articles that enlarged the scope of this work [10, 28, 31]. Lee et al. reported
an analysis based on the threshold Corner Ratio (CR) which is set according to the image database.
The authors suggest distinct values for that parameter depending on the image to be processed.
In general, parameter setting in corner detectors is not an easy task since these parameter values
are not usually valid for all images of a database [23]. Regarding the wavelet decomposition, the
algorithm uses the wavelet transform modulus maxima that often adopts a Gaussian or Mexican
hat mother wavelet.

More recently, Pedrosa and Barcelos [23] devised a multiscale corner detector more robust
to noise and simple in terms of computational complexity. According to this scheme, the only
parameter to be set is the number of iterations for the anisotropic filtering function regardless the
image database. The anisotropic filtering eliminates the influence of noise and removes irrelevant
details on the curvature signal of shapes but it requires higher computational effort, especially
as the number of iterations increase. Pedrosa and Barcelos’ method presents some advantages
over other corner detectors, particularly it embodies a filtering process that prevents false corner
detection. Moreover, the method depends on a single parameter in your set that corresponds to the
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number of iterations in anisotropic filtering. The authors report that the algorithm achieves good
results after 500 iterations in the filtering step. Nevertheless, it is necessary to determine the best
number of iterations in the smoothing step and it seems to be as difficult as to determine the suitable
parameter κ to compute the curvature. In fact, both parameters are sensitive to resolution, rotation
and contour noise. The authors assessed the algorithm by using binary images from MPEG7 Part
B [13] database and ground-truth based measures. The ground truth corners of these binary images
were manually marked and used to assess the simulation results.

In this paper, we present a multiscale algorithm for corner detection that is the follow up to
the work presented at the 24th Conference on Graphics, Patterns and Images (Sibgrapi 2011) [21].
The main focus of this prior publication was to detect corners over redundant scales of the angu-
lation signal decomposition, aimed at achieving a suitable reconstruction of the original contour.
Similarly, the proposed algorithm also decomposes the angulation signal of the shape contour into
multiple scales to obtain both local maxima and minima of consecutive scales of this function
through an undecimated wavelet decomposition [8, 10, 14] to identify the shape dominant points.
Moreover, we introduce a novel procedure that searches for multiscale algorithm parameters, in a
particular database, and combine it to the idea underlying inter-scale correlation to detect dominant
points in planar shapes. The proposed method is also assessed and compared with three methods
[14, 20, 23] including the well known curvature scale-space (CSS). Furthermore, the performance
evaluation of the algorithms rely on ground-truth based measures.

The outline of the paper is as follows: in the next section, we present a brief review of the
related works. Section 3 describes the proposed corner detection technique. Section 4 discusses
the computational complexity of the proposed method and the related ones. Section 5 reports and
discusses the experimental results and Section 6 concludes this paper.

2 Related Methods

In this section, we present three methods available in the literature and named as Pedrosa and
Barcelos [23], CSS [17] and Lee et al. [14]. The main reason for choosing these methods in this
study is their multiscale nature, so that we can fairly assess the proposed corner detector.

2.1 Pedrosa and Barcelos’ Technique

Pedrosa and Barcelos (2010) introduced a method based on the detection of high curvature points
along the contour to identify corners. Each curvature point pi is considered to be the curve or
the line segments connecting pi to the points pi−κ and pi+κ in the contour, where the value κ
is a smoothing parameter. According to the authors, the ideal parametrization is a difficult task
to achieve as it may depend on various factors such as shape resolution and orientation. This
approach defined κ = 1, leading to a detailed curvature signal, that is also highly sensitive to noise.
This curvature signal is then smoothed by a nonlinear anisotropic filter that eliminates most of
the high curvature points unrelated to corners. The number of iterations of this filtering process
also controls signal details and therefore as this parameter increases relevant corner points can be
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suppressed. After this smoothing step, the actual corner detection is achieved by the analysis of
local maxima and minima of the smoothed curvature. However, not all remaining maxima and
minima points constitute real corners.

2.2 The Curvature Space-Scale Technique

One of the most popular multiscale curvature representation of 2D curves is the curvature scale-
space [17], which has been improved and applied in different works [1, 3, 11, 18, 19, 20, 25, 33,
35, 36].

The CSS technique is suitable for recovering invariant geometric features, curvature zero-
crossing points [17] and/or extreme [35], of a planar curve at multiple scales. To compute it,
the curve Γ is first parameterized by the contour point t:

Γ(t) = (x(t),y(t)). (1)

The multiscale version of Γ is defined by [18] as:

Γσ = (X(t,σ),Y (t,σ)), (2)

where
X(t,σ) = x(t)⊗g(t,σ) ;Y (t,σ) = y(t)⊗g(t,σ). (3)

The symbol ⊗ refers to the convolution operator and g(t,σ) denotes a Gaussian of width σ .
Note that σ describes the scale parameter. The process of generating scaled versions of Γ as σ
increases from zero to infinity (∞) denotes the evolution of Γ. In order to find curvature zero-
crossings or extreme from scaled versions of the input curve, it is necessary to accurately compute
curvature, K, on an scaled version Γσ . Curvature K on Γσ is given by [18]:

K(t,σ) =
Ẋ(t,σ)Ÿ (t,σ)− Ẍ(t,σ)Ẏ (t,σ)

3
√

(Ẋ(t,σ)2 + Ẏ (t,σ)2)
, (4)

where

Ẋ(t,σ) =
∂
∂ t

(x(t)⊗g(t,σ)) = x(t)⊗ ġ(t,σ), (5)

Ẍ(t,σ) =
∂ 2

∂ t2 (x(t)⊗g(t,σ)) = x(t)⊗ g̈(t,σ). (6)

Similarly, Ẏ (t,σ) and Ÿ (t,σ) can be defined by following the expressions in Equation (5) and
(6). This algorithm designed by Mokhtarian and Suomela [20] requires the Canny edge operator
applied to the gray level image to obtain a binary edge image.
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2.3 Lee et al. Technique

This method encloses the angulation function, φ(t), which is obtained by

φ(t) = tan−1
(

yt+q− yt−q

xt+q− xt−q

)
(7)

where the parameter q is called smoothing parameter. According to Lee et al., the determination of
the parameter q in Equation (7) depends on the orientation resolution and the corner discrimination
ability.

Previous work in digital curves analysis and representation [26, 27] have pioneered the use
of edge gradient direction to represent shape contour. Rosenfeld and Johnston (1973) argument
that the choice of the smoothing parameter q can be challenging, and they suggested q > 1 to
provide a smoothed slope measurement in the corner profile represented by the angulation signal.
However, we have observed that the best choice depends on the scale of interest. Following these
observations, Lee et al. [14] computed the angulation signal by using q = 3 such that this choice
caused the orientation profile of a corner to be displayed as a ramp-like profile.

Furthermore, the next section describes the proposed approach, including description of key
steps from [14] that were incorporated to our algorithm.

3 The Multiscale Corner Detector

Corners appear as local features on the contour and wavelets are suitable to evaluate significant
features that persist over several scales of smoothed contours. Attempting to identify corner candi-
dates, inter-scale correlation by using Mexican hat wavelet decomposition searches for candidates
which occur where there are maxima and minima in detail coefficients at several adjacent scales.
Mexican hat has an excellent selectivity in position: it is quite efficient for a pointwise analysis, in
particular the detection of local singularities (contours, corners) [2]. Moreover, the wavelet prop-
erties of the Mexican hat can be exploited to detect features at different scales [12]. Our approach
considers this wavelet because it identifies changes in non-stationary angulation signals and it can
be extended to multidimensional approaches in an efficient way when approximating this wavelet
by difference of Gaussian functions.

Fig. 1 summarizes the proposed methodology for multiscale corner detection. The contour
signal is acquired in the contour extraction of a segmented shape. As there are various ways of rep-
resenting a shape contour by signals, we generate the contour signal which follows the 4-directional
chain code [7]: such method starts from an initial point of contour and follows it in a clockwise
manner. For each point, the chain-code retrieves the location of the actual point and describes the
direction to be followed in the contour in order to find the next point. Its output must be parame-
terized and the result is executed in a corner detector like an 1-D angulation [14] signal. The main
differences between our approach and the Lee et al. method are: (a) the adopted mother wavelet,
here the Mexican hat function [16], the candidate evaluation phase, the methodology to search for
algorithm parameters and additional comparisons among more recent papers.
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1. Contour Parametrization

2. Angulation Signal Computing

3. Mexican Hat Wavelet Decomposition

4. Multiscale Automatic Correlation

5. Corner Identification

Signal
Preprocessing

Corner
Detection

Figure 1: The methodology for the proposed corner detector.

The input of the corner detector is the angulation function of the shape contour. This one-
dimensional signal is generated according to Equation 7 and it corresponds to step 2 of the proposed
methodology (see Fig. 1). In the next step, the angulation signal is convolved with a scaled version
of the mother wavelet at scales

cs(t) = φ(t)⊗ψs(t), (8)

where the symbol ⊗ denotes the convolution operation, cs(t) corresponds to the smoothed version
of the angulation signal at scale s and ψs(t) is a scaled version of the mother wavelet. The function
ψs(t) is such that

ψs(t) =
1√
s
ψ
( t

s

)
(9)

and the mother wavelet ψ(t) is the second derivative of a Gaussian, i.e. a normalized Mexican hat
function [16] given by

ψ(t) =
2

π1/4
(√

3σ
)
(

t2

σ2 −1
)

exp
(−t2

2σ2

)
(10)

where σ refers to the standard deviation.
Thus, by applying Equation (8) to the angulation signal it yields the approximation wavelet

coefficients (smoothed signal) in each scale s. Hence, the difference between two successive
smoothed signals generates the detail wavelet coefficients, ws(t), as Equation (11) summarizes

ws(t) = cs−1(t)− cs(t), s≥ 1 (11)
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where c0(t) corresponds to the original angulation signal.
The proposed methodology states that corners occur where there are extreme values, i.e. max-

ima and minima values in the non-orthogonal wavelet coefficients ws(t) at two or more adjacent
scales. The novelty of this multiscale framework consists in inspecting these peak values by using
correlation signals obtained from the redundant scales of the wavelet decomposed signal without
the usage of a threshold. Thus, different redundant scales are generated and later correlated to
detect persistent peaks which are likely to be candidate corners in the decomposed signals. Our
experimental findings indicate that the multiscale correlation analysis at the first three scales is able
to reveal redundant information that remains over scales and it is likely to be a candidate corner.
The spatial correlation corrs(t) between adjacent scales s and s+ 1 at the contour point t is given
by

corrs(t) =
s+1

∏
i=s

wi(t), s≥ 1. (12)

In this paper, the angulation signal is decomposed into three spatial scales to be correlated and
thus check redundant information between scales for corner detection. According to the tests, this
redundancy can be investigated for more levels of decomposition. In fact, the amount of scales
in which the true corners are preserved varies with the image. Moreover, we have observed that
for smooth contour regions candidate corners do not persist over many decomposition scales while
candidate corners associate to high curvature points do.

Our approach is synthesized in Fig. 2 and therefore it depicts that real corners have large
amplitude over many wavelet scales, and false corners decays with increasing scale. The red circles
in Fig. 2 illustrate the selected candidate corners in the array. The angulation signal is decomposed
into several scales: a detail coefficient is compared to the one in the next level. This result shows
that corners correspond to the largest amplitude values which persist on the correlation signal over
many wavelet scales.

Following the statement that false corners die out swiftly with increasing scale, the algorithm
identifies on the correlation signal whether a candidate corner is true or false by testing the inequal-
ity:

|corrs(t)|> |ws(t)|, s≥ 1 (13)

where | · | stands for the absolute value. When Equation (13) is confirmed (for scale s and all n
contour points) it means that large spatial correlation values between two consecutive scales points
to real corners. Afterwards, these points constitute an array of probable corners. The algorithm
investigates whether the candidate corner presents the largest value in the neighborhood where the
correlation is high in order to differ a high curvature point from a sharp correlated false corner. The
absence of corners or other significant features in the neighborhood of a contour region allows the
false corners to be removed from the array.

Correlation detected points are highlighted in Fig. 3, which are overlaid to the detail wavelet
coefficient signal. Fig. 3(c) magnifies a portion of Fig. 3(b) to show the absolute values of the
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correlation (red line) and the wavelet coefficient (black line). We show that the Equation (13) holds
when the corner is identified only at locations when the correlation magnitude is higher than the
absolute value of the decomposition coefficient.

4 Temporal Computational Complexity

The algorithm steps related to the contour parametrization and angulation signal extraction are less
critical in terms of computational complexity than the decomposition scheme. While the prepro-
cessing step performs at a run-time complexity of order Θ(n) (steps 1 and 2 in Fig. 1), the module
related to the Mexican hat wavelet decomposition performs at a higher complexity of Θ(n2) (steps
3, 4 and 5). Indeed, the current convolution implementation could be improved by reformulating
the algorithm to be executed in the frequency domain. However, the remaining procedure concern-
ing the multiscale correlation accomplishes a complexity Θ(n2). Thus, the overall computational
complexity of the algorithm is: Θ(n)+Θ(n2)+Θ(n2) = Θ(n2), where n is the number of shape
contour points. In this paper, the angulation signal is decomposed across only a fixed number of
three scales and hence it does not impact the overall algorithm asymptotic complexity.

Despite the multiscale nature of the developed algorithm, we do not define a range of scales
(minimum and maximum) to perform the correlation step of the corner detector. In fact, this scale
range would affect the computational complexity of the algorithm as another variable to be enrolled
in the algorithm.

The corner detection method introduced by Pedrosa and Barcelos (2010) consists of three steps
which include shape representation through K-curvature signal, nonlinear anisotropic filtering and
corner detection on the filtered curvature signal. The overall computational complexity of this
method is reported as O(nm), where n is the number of shape contour points and m corresponds to
the number of iterations in the smoothing step using a nonlinear anisotropic diffusion filter. Thus,
the larger the image database and the greater the number of iterations, the longer will be the corner
detection processing.

The CSS approach presents a computational complexity higher than the proposed method. This
is due to the Gaussian filtering to be applied to the shape outline several times and its respective
standard deviation changes in each iteration, as defined in [17, 20]. This process is performed to
generate the space-scale map from the original method and then run the corner detector with the
Gaussian parameter equal to σhigh [20]. This method achieves a computational complexity O(n3),
where n is the number of points on a contour.

Lee et al. corner detector performs similarly to our method, but with different mother function
at the wavelet decomposition step. Another difference refers to the corner location since Lee et al.
method only evaluates a specific scale and searches for maximum and minimum values according
to a threshold. Its computational complexity is characterized by O(n2), where n is the number of
points on a shape contour. An overall view about the computational complexity of all methods is
displayed in Table 1.
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Table 1: Temporal computational complexity of the methods.
Method Complexity

Proposed Θ(n2)

Pedrosa and Barcelos O(nm)

CSS O(n3)

Lee et al. O(n2)

5 Simulation Results

This section presents the experiments and performance evaluation of the proposed technique for
dominant point detection in comparison to other contour-based methods as shape salience point
detection [23], curvature space-scale analysis [20], and wavelet transform modulus maxima [14]
approaches. The results were obtained by running the methods for a set of shapes of different sizes
and roughness, which belong to a dataset of 104 binary images from MPEG7 Part B [13]. It is
noteworthy that 10% of the images from the dataset present contours with an amount of spurious
variation.

5.1 Performance Evaluation Methodology

Visual inspection is helpful in assessing the accuracy of corner-detection methods, but it is a tedious
and often subjective task. Also, the points of high curvature do not necessarily correspond to
visually significant ones [4, 7, 19, 20]. These reasons motivate the use of quantitative measures
that can relate detected points to ground-truth information to assess the performance of the corner
detectors.

Moreover, performance assessment of corner-detection methods can also be evaluated in terms
of reconstruction error and compacting ratio [21], bearing in mind there is a tradeoff between these
measures.

This section compares the proposed method to the three other corner detectors: the standard
CSS, Pedrosa and Barcelos, and Lee et al. methods, which are based on the multiscale analysis
and therefore provide suitable comparisons with the developed corner detector. The performance
assessment methodology considers ground-truth based measures namely Precision and Recall.

Precision measures the ability of the multiscale detectors to retrieve corners that are relevant
to represent a shape while Recall measures the relevant corners that are actually detected. These
relevant corners correspond to the shape ground-truth. In fact, these measures are defined as:

Precision =
#({relevant corners}∩{detected corners})

#({detected corners}) , (14)

Recall =
#({relevant corners}∩{detected corners})

#({relevant corners}) (15)
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where #(•) is the cardinality of the set • and ∩ denotes intersection of sets. When false corners are
not detected, Precision returns a value equal to 1.0. Despite this, if all detected corners correspond
to the true ones then Recall is achieved to 1.0. Thus, these concepts accomplish that Precision and
Recall do not report all true corners and no false corner points are detected, simultaneously.

5.2 Experiment I - Parameter adjustments

In this section, we introduce a procedure to search for the best parameter values for multiscale
methods that relies on ground-truth corners of an image database. The aim of this procedure is to
maximize Precision and Recall for a particular database in terms of a cost function.

Here, we introduce the cost function Q as the sum of Precision and Recall obtained when the
parameters p1 and p2 of the multiscale corner detectors are searched over an image database I, in
accordance with:

Q(p1, p2) = ∑
∀i∈I

Precision(p1, p2, i)+Recall(p1, p2, i). (16)

The function Q is higher when the parameters produce high Precision and Recall values. Thus, the
best results are achieved when Q is maximized, and finally the function argmaxQ(p1, p2) returns
the best pair of parameters. In the following we describe the whole parameter adjustment algorithm.
First, we define a range for parameters p1 and p2. Then, we apply a force brute optimization scheme
where the corner detector runs for all pairs of parameter values in the range p1 = [p1min ..p1max ] and
p2 = [p2min ..p2max ] and for all images in the database. Finally, the best pair of parameter values is
chosen. With regard to our proposed method, the pair (p1, p2) consists of the parameters q and σ .

This experiment considered qmin = 2, qmax = 15 and σmin = 1, σmax = 15 and furthermore
the proposed algorithm executed 210 times for each shape from the MPEG7 database. Moreover,
Precision= 1 and Recall= 1 were accomplished for different pairs of (q,σ) and occurrences within
the range, i.e. from (qmin,σmin) = (2,2) to the maximum (qmax,σmax) = (15,15). The result of this
experiment was the pair (q,σ) = (8,4).

To perform the tests, we have applied the proposed function Q to CSS and Lee et al. methods.
Both multiscale detectors encompass parameters suggested by the authors regardless the applied
database. However, our experiments showed that better results are accomplished when adjusting
these parameters according to the database. In particular, Mokhtarian and Suomela (1998) sug-
gested σhigh = 4 for tracking corners and a threshold h = 0.02 for removing false corners in the
CSS approach while Lee et al. (1995) conducted experiments with q = 3. In this paper, we have
reproduced the original Lee et al. method by applying the Mexican hat wavelet function with σ = 3
to the angulation signal extracted with q = 3, as suggested by the authors.

Following the proposed parameter-adjustment function Q, we seek the best pair (p1, p2) for
each method, with (σhigh,h) in the CSS approach and (q,σ) to the Lee et al. method. With regard
to the CSS parameters, we have tested the values σhigh = [1..15], hmin = 0.01, hmax = 15.0, with
an increasing step of 0.01 for h. Accordingly, the mode of the elements that provided Precision=1
and Recall=1 was (σhigh,h) = (6,10). Likewise, the experiment with Lee et al. method achieved
the mode pair (q,σ) = (4,3) within the range q = [2..15] and σ = [1..15].
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Fig. 4 exhibits the number of corners detected by the discussed methods. In fact, these results
were achieved with the aforementioned database and by using different values for σ . We have
observed for all multiscale methods, that the number of corners decreases as σ increases. Moreover,
a small value of this parameter retrieved more corners, including many false ones. After reaching a
certain σ value, i.e. σ equal to 3, the number of corners remained steady independent of increasing
this parameter value. Our simulation results also showed that q values close to 1 implied a great
amount of details on the angulation signal and therefore the algorithms detected more corners,
including false corners. On the other hand, higher values of q implied a great amount of detail
reduction which resulted in missing true corners.

It is important to note that our comparative analysis did not include Pedrosa and Barcelos’
method since it does not require multiscale parameters in its design.

5.3 Experiment II - Performance assessment

This section presents the experiments performed with parameters generated by the methodology
introduced in Subsection 5.2. Fig. 5 and Fig. 6 show that the novel parameter-adjustment algorithm
achieved better results for CSS and Lee et al. methods. Also, the multiscale proposed method,
Pedrosa and Barcelos’ and modified CSS produced slightly similar results when applied to a shape
of smooth contour (see Fig. 5). In fact, our method detected all true corners without retrieving any
false corner while Pedrosa and Barcelos’ method missed two true corners and produced two false
positives. The modified Lee et al. method reached an intermediate Precision that is faded by a
higher number of false corners. The original CSS and Lee et al. methods produced a large amount
of false corners and the worse results obtained for this shape.

Fig. 6 presents the result of applying each corner detector to a noisy sample from the dataset.
Only the proposed method detected all the corners which composes the ground-truth image. The
Pedrosa and Barcelos’ method filtering step was able to detect fewer false corners, however this
step implies loss of true corners. The other methods performed similarly to the proposed method
for this noisy image.

Table 2: Comparative measures among the methods.

Method
Precision Recall

Mean Std Mean Std

Proposed 0.87 0.29 0.97 0.08

Pedrosa and Barcelos 0.87 0.19 0.68 0.18

CSS 0.72 0.33 0.61 0.18

Modified CSS 0.84 0.29 0.78 0.22

Lee et al. 0.51 0.33 0.71 0.36

Modified Lee et al. 0.61 0.31 0.75 0.35

Concerning the performance assessment, the average values of Precision and Recall measures
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were calculated for all methods and Table 2 summarizes the quantitative results. Pedrosa and
Barcelos’ and the proposed approaches achieved the best Precision, and consequently fewer de-
tection of false corners. CSS and Lee et al. modified versions have reached higher values for this
measure. Regarding Recall measure, Pedrosa and Barcelos’ method has underperformed the others
due to the filtering process, probably. Conversely, the proposed approach achieved the best detec-
tion rate concerning this measure, i.e. Recall = 0.97. From these results, we have concluded that
the performance of the modified corner detectors was improved by the proposed parameter setting
and Recall measures confirm it.

Pedrosa and Barcelos’ method detected a number of corners closer to the ground-truth of the
already mentioned shapes. However, the spatial coordinates of the detected corners did not match
the true corner ones and it is confirmed by the lowest value of Recall. As this corner detector
performs an anisotropic iterative denoising over the noisy and non-noisy images, probably the fixed
number of iterations caused undesirable smoothing effects over the non-noisy ones. It is important
to mention that these two classes of images may require different number of iterations.

The modified CSS method achieved a lower number of missed corners, i.e. high Recall values
while Lee et al. detector attained increasing values of Precision in its modified version.

Regarding the proposed method, we have observed that it has accomplished the lowest number
of false corners and the highest number of true corners among the discussed methods. Another
important advantage of our method is that it requires only three scales of wavelet decomposition to
extract relevant information from the correlation between subsequent scales. Moreover, the angula-
tion function did not affect the correct location of the true corners, as Recall measure indicates. For
each level of wavelet decomposition, the algorithm discards irrelevant information of the contour
representation signal and retains only dominant points, which are candidate corners.

According to Fig. 7(a), all histograms are asymmetrically distributed, and depart from a normal
distribution. Regarding the Precision measure, the proposed method presents a higher occurrence
of values close to 1. However, all methods show more than a mode in their histograms, except
the Pedrosa and Barcelos’ method, which hit the higher values of Precision by finding fewer false
corners due to its anisotropic filtering.

Tests were also performed with the method proposed in non-synthetic images. Fig. 8 displays
a image under light and shadow effects. The object shape is segmented with Canny method [5, 6]
and the proposed corner detector identified all the high curvature points correctly.

6 Conclusions

In this paper, we have introduced an approach for corner detection that uses correlation between
redundant scales of a normalized Mexican hat wavelet decomposition. This wavelet is quite effi-
cient for local singularities detection as contours and corners, and moreover, the properties of this
wavelet can be exploited to detect features at different scales. Additionally, this wavelet can be
extended to multidimensional approaches in an efficient way when approximating it by difference
of Gaussian functions. Our approach takes in account these advantages to identify changes in non-
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stationary angulation signals for multiscale corner detection. The proposed method evaluates the
multiscale representation of candidate corners to select the ones which persist on the correlation
signal over many scales of angulation signal decomposition. Thus, it discards false corners that
die out swiftly throughout the scales. We concluded that successive decomposition of the angula-
tion signal can identify and retain relevant features, i.e. corner candidates, without distorting the
true location of them on the shape contour. Moreover, we have also observed that the correlation
process between scales succeeded in retrieving candidate corners up to the first three scales. In
fact, subsequent scales did not encompass enough information for corner candidate detection and
furthermore the algorithm discarded poorly correlated information across these scales. Regard-
ing computational complexity, the proposed method achieved a lower computational complexity
comparable to CSS and Lee et al. approaches whereas Pedrosa and Barcelos’ method reached the
lowest computational complexity particularly, when the number of contour points is greater than
the number of iterations of the anisotropic filtering. A relevant contribution of this paper concerns
the novel search for parameters of multiscale corner detection algorithms that relies on ground-truth
information and Precision and Recall measures. This novel procedure improved the performance
of two multiscale methods which were designed to work with constant parameters regardless the
database. This improvement was achieved when parameters were tuned according to the image
database. Additionally, we concluded from the experiments that our corner detector and Pedrosa
and Barcelos’ method performed similarly concerning Precision. With regard to Recall measure,
the proposed corner detector outperformed the others. It means that it was efficient on retrieving
true corners and discarding false ones. Finally, we believe that the proposed methodology intro-
duces a feasible alternative to search and tune parameters of corner detection algorithms that is
highly adaptable to image database but relies on ground-truth based measures.
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(a) Original shape and its ground-truth corners
(red circles).
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(b) Angulation signal with its highlighted corners (red circles).
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(c) Highlighted corners into the first level of detail coefficients. Cross marks indicate
false corners.
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(d) Highlighted corners into the second level of detail coefficients. Cross marks
indicate false corners.
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(e) Highlighted corners into the third level of detail coefficients.

Figure 2: Correlation analysis between wavelet coefficients of different scales of a shape contour.
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(a) Highlighted corners into the second level of detail coefficients and correlation
signal.
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(b) Highlighted corners into the second level of detail coefficients and correlation
absolute values.
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(c) Zoom in the correlation signal over the second level of detail coefficient absolute
values.

Figure 3: Effects of correlation between wavelet coefficients of consecutive scales from shape in
Fig. 2(a).
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Figure 4: Comparative analysis of methods for different standard deviation values and number of
HCP. (a),(b),(e),(f) binary shapes and (c),(d),(g),(h) their respective comparative analysis.
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(a) Proposed method: 12 corners (no missing, no
false positive).
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(b) Pedrosa and Barcelos’ method: 12 corners (1
missed, 1 false positive).
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(c) CSS method: 33 corners (1 missed, 22 false pos-
itive).
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(d) Modified CSS method: 11 corners (1 missed, no
false positive).
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(e) Lee et al. method: 28 corners (no missing, 16
false positive).
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(f) Modified Lee et al. method: 17 corners (no miss-
ing, 5 false positive).

Figure 5: Corners detected (circle marks) from a sample shape with 1328 contour points and 12
true corners.
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(a) Proposed method: 61 corners (no missing, 58
false positives).
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(b) Pedrosa and Barcelos’ method: 17 corners (2
missed, 16 false positives).
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(c) CSS method: 56 corners (03 missed, 56 false
positive).
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(d) Modified CSS method: 31 corners (03 missed,
31 false positive).
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(e) Lee et al. method: 76 corners (02 missed, 75
false positives).
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(f) Modified Lee et al. method: 64 corners (02
missed, 63 false positive).

Figure 6: Detected corners (circle marks) from a sample shape with 1193 contour points and 03
true corners.
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Figure 7: Frequencies of (a) precision and (b) recall values in database.
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(a) Original image.
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(b) Detected corners.

Figure 8: Proposed corner detector in a non-synthetic image: (a) original image and (b) detected
corners (gray circles) in the shape obtained from the Canny method [6].
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